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Pattern avoidance and fiber bundle structures on
Schubert varieties

Timothy Alland∗ and Edward Richmond†

Department of Mathematics, Oklahoma State University, Stillwater, OK, USA

Abstract. We give a permutation pattern avoidance criteria for determining when the
projection map from the flag variety to a Grassmannian induces a fiber bundle struc-
ture on a Schubert variety. In particular, we show that a Schubert variety has such a
fiber bundle structure if and only if the corresponding permutation avoids the split
patterns 3|12 and 23|1. We also show that a Schubert variety is an iterated fiber bun-
dle of Grassmannian Schubert varieties if and only if the corresponding permutation
avoids (non-split) patterns 3412, 52341, and 635241.

Résumé. Nous donnons un schéma de permutation des critères d’évitement pour
déterminer quand la carte de projection du drapeau de la variété à un Grassmannienne
induit une structure de faisceau de fibres sur une variété de Schubert. En particulier,
nous montrons qu’une variété de Schubert a une telle structure de faisceau de fibres
si et seulement si la permutation correspondante évite les motifs fendus 3|12 et 23|1.
Nous montrons aussi qu’une variété de Schubert est un faisceau de fibres itéré de
variétés Grassmannienne Schubert si et seulement si la permutation correspondante
évite (non-fractionnées) modèles 3412, 52341 et 635241.
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1 Introduction

Let K be an algebraically closed field and let

F`(n) := {V• = V1 ⊂ V2 ⊂ · · · ⊂ Vn−1 ⊂ Kn | dim(Vi) = i}

denote the complete flag variety on Kn. For each r ∈ {1, . . . , n− 1}, let Gr(r, n) denote
the Grassmannian of r-dimensional subspaces of Kn and consider the natural projection
map

πr : F`(n) � Gr(r, n) (1.1)

given by πr(V•) = Vr. It is easy to see that the projection πr is a fiber bundle on F`(n)
with fibers isomorphic to F`(r)× F`(n− r). The goal of this paper is to give a pattern
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avoidance criteria for when the map πr restricted to a Schubert variety of F`(n) is also a
fiber bundle.

Fix a basis {e1, . . . , en} of Kn and let Ei := span〈e1, . . . , ei〉. Each permutation w =
w(1) · · ·w(n) of the symmetric group Sn defines a Schubert variety

Xw := {V• ∈ F`(n) | dim(Ei ∩Vj) ≥ rw[i, j]}

where rw[i, j] := #{k ≤ j | w(k) ≤ i}. For details on the geometry of the map πr restricted
to Xw, see Lemma 2.4 and Proposition 2.6.

Theorem 1.1. Let r < n and w ∈ Sn. The projection πr restricted to Xw is a Zariski-locally
trivial fiber bundle if and only if w avoids the split patterns 3|12 and 23|1 with respect to position
r.

If a permutation avoids a split pattern with respect to every position r < n, then that
permutation avoids the pattern in the classical sense. For a precise definition of split
pattern avoidance, see Definition 2.2. Pattern avoidance has been used to combinatorially
describe many geometric properties of Schubert varieties. Most notably, Lakshmibai and
Sandhya prove that a Schubert variety Xw is smooth if and only if w avoids the patterns
3412 and 4231 [3]. Pattern avoidance has been used to characterize many other geometric
properties on Schubert varieties as well. For a survey of these results see [1].

1.1 Complete parabolic bundle structures

For any positive integer n, define the set [n] := {1, . . . , n}. The varieties F`(n) and
Gr(r, n) are the extreme examples in the collection of partial flag varieties on Kn. For
any subset a := {a1 < · · · < ak} ⊆ [n− 1], define the partial flag variety

F`(a, n) := {Va
• := Va1 ⊂ Va2 ⊂ · · · ⊂ Vak ⊆ Kn | dim(Vai) = ai}.

If b ⊆ a, then there is a natural projection map πa
b : F`(a, n) � F`(b, n) given by

πa
b(V

a
• ) = Vb

• . Note that the map πr = π
[n−1]
{r} from (1.1). Any permutation σ =

σ(1) · · · σ(n− 1) ∈ Sn−1 defines a collection of nested subsets

σ1 ⊂ σ2 ⊂ · · · ⊂ σn−2 ⊂ σn−1 = [n− 1] where σi := {σ(1), . . . , σ(i)}.

The maps π
σi
σi−1 induce an iterated fiber bundle structure on the complete flag variety

F`(n)
π
[n−1]
σn−2
� F`(σn−2, n)

π
σn−2
σn−3
� · · ·

π
σ3
σ2
� F`(σ2, n)

π
σ2
σ1
� F`(σ1, n) � pt (1.2)

where the fibers of each map π
σi
σi−1 are isomorphic to Grassmannians.
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Definition 1.2. Let w ∈ Sn. We say Xw has a complete parabolic bundle structure if there
is a permutation σ ∈ Sn−1 such that the maps π

σi
σi−1 induce an iterated fiber bundle structure on

the Schubert variety

Xw = Xn−1

π
[n−1]
σn−2
� Xn−2

π
σn−2
σn−3
� · · ·

π
σ3
σ2
� X2

π
σ2
σ1
� X1 � pt (1.3)

where Xi := π
[n−1]
σi (Xn) ⊆ F`(σi, n). In other words, each map π

σi
σi−1 : Xi � Xi−1 is a

Zariski-locally trivial fiber bundle.

Some Schubert varieties do not have complete parabolic bundle structures. The small-
est such Schubert variety is X3412. When K = C, Ryan showed that any smooth Schubert
variety has complete parabolic bundle structure [6]. Wolper later generalized this result
to include Schubert varieties over any algebraically closed field [7]. Combining these
results with the Lakshmibai-Sandhya smoothness criteria, we have:

Theorem 1.3. ([6, 7, 3]) If w avoids patterns 3412 and 4231, then Xw has a complete parabolic
bundle structure.

An analogous result to Theorem 1.3 holds true for rationally smooth Schubert vari-
eties of any finite type [5]. We remark that the converse of Theorem 1.3 is false. For
example, the permutation σ = 213 induces a complete parabolic bundle structure on
X4231. One application of Theorem 1.1 is a pattern avoidance characterization of Schu-
bert varieties that have complete parabolic bundle structures.

Theorem 1.4. The permutation w avoids patterns 3412, 52341 and 635241 if and only if the
Schubert variety Xw has a complete parabolic bundle structure.

The key property used to prove both Theorems 1.1 and 1.4 is the notion of a Billey-
Postnikov (BP) decomposition w = vu of a permutation (see Proposition 2.6 for the
definition). The term BP decomposition was originally used in [4] to describe a certain
factorization condition on the Poincaré polynomials of w, v, u observed by Billey and
Postnikov in [2]. Since then, several equivalent conditions have been given to describe
this property (see [5, Section 4]).

2 Preliminaries

For any integers m < n, define the interval [m, n] := {m, m + 1, . . . , n} and let [n] :=
[1, n]. We now denote the symmetric group W := Sn and will denote permutations
w ∈ W using one-line notation w = w(1)w(2) · · ·w(n). Diagrammatically, we draw a
representation of the permutation matrix of w with nodes marking the points (w(i), i)
using the convention that (1, 1) marks the upper left corner.
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Example 2.1. The permutation w = 436125 corresponds to the matrix:

A split pattern w = w1|w2 ∈ W is a divided permutation where w1 = w(1) · · ·w(j)
and w2 = w(j + 1) · · ·w(n) for some j ∈ [n − 1]. We use split patterns to make the
following modified definition of pattern containment and avoidance.

Definition 2.2. Let k, r ≤ n. Let w = w(1) · · ·w(n) and u = u(1) · · · u(j)|u(j + 1) · · · u(k).
We say w contains the split pattern u with respect to position r if there exists a sequence
(i1 < · · · < ik) ⊆ [n] such that

1. w(i1) · · ·w(ik) has the same relative order as u

2. ij ≤ r < ij+1.

If w does not contain u with respect to position r, then we say w avoids the split pattern u
with respect to position r.

Example 2.3. Let w = 426135 and u = 34|12. Then w contains the split pattern u with respect
to position r = 3, but avoids the split pattern u with respect to all other positions.

Note that part (1) of Definition 2.2 is the usual definition of pattern containment. It is
easy to see that if w avoids a split pattern u with respect to all r ∈ [n− 1], then w avoids
the non-split pattern u in the usual sense.

We now go over some notation and properties of W as a Coxeter group. Let S =
{s1, . . . , sn−1} denote the set of simple generators of W. Let ` : W → Z≥0 denote the
length function and ≤ denote the Bruhat partial order on W. For any w ∈W, define

S(w) := {s ∈ S | s ≤ w}
DL(w) := {s ∈ S | `(sw) < `(w)}
DR(w) := {s ∈ S | `(ws) < `(w)}

to be the support, left descent set, and right descent set of w, respectively. For any
subset J ⊆ S, let WJ denote the parabolic subgroup generated by J and let W J denote the
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set of minimal length coset representatives of W/WJ . For each w ∈ W and J ⊆ S, there
is a unique parabolic decomposition w = vu where v ∈ W J and u ∈ WJ . The parabolic
decompositions with respect to J = S \ {sr} can be described explicitly in terms of split
patterns.

Lemma 2.4. Let w = w1|w2 = w(1) · · ·w(r)|w(r + 1) · · ·w(n) ∈ W and w = vu be the
parabolic decomposition with respect to J = S \ {sr}. Then

1. v = v1|v2 where v1 and v2 respectively consist of the entries of w1 and w2 arranged in
increasing order.

2. u = u1|u2 where u1 and u2 are respectively the unique permutations on [1, r] and [r + 1, n]
with relative orders of w1 and w2.

Proof. The lemma follows from the fact that DR(v) ⊆ {sr} and that sr /∈ S(u).

Example 2.5. Let w = 541|623. If w = vu is the parabolic decomposition with respect to
J = S \ {s3}, then v = 145|236 and u = 321|645.

541|623

=

145|236

·

321|645

In the case J = S \ {sr}, each v ∈W J corresponds to a unique Schubert variety in the
Grassmannian Gr(r, n). In particular, define the Schubert variety

X J
v := {V ∈ Gr(r, n) | dim(V ∩ Ej) ≥ rv[i, j]}.

Geometrically, restricting πr to Xw gives the projection πr : Xw � X J
v where the generic

fiber is isomorphic to the Schubert variety Xu. We now give a combinatorial characteri-
zation for when πr is a fiber bundle.

Proposition 2.6. ([5, Theorem 3.3, Proposition 4.2]) Let w ∈ Sn and r < n. Let w = vu be
the parabolic decomposition with respect to J = S(w) \ {sr}. Then the following are equivalent.

1. w = vu is a BP decomposition with respect to J.

2. S(v) ∩ J ⊆ DL(u).

3. The projection πr : Xw � X J
v is a Zariski-locally trivial Xu-fiber bundle.
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The equivalencies in Proposition 2.6 are proved in [5] and for this paper, we will take
either parts (2) or (3) of Proposition 2.6 as the definition of BP decomposition (note that
this definition corresponds to a “Grassmannian BP decomposition" in [5]). The goal of
Theorem 1.1 is to give a pattern avoidance criteria on the permutation w for any of these
equivalent conditions.

Finally, we say w has a complete BP decomposition if we can write w = vk · · · v1
where for every i ∈ [k − 1], we have |S(vi · · · v1)| = i and vi(vi−1 · · · v1) is a BP de-
composition with respect to S \ {sri} where sri is the unique simple generator in S(vi) \
S(vi−1 · · · v1).

Observe that the maps πr = π
[n−1]
{r} are not of the form π

σi
σi−1 used in Definition 1.2.

The next proposition gives the connection between BP decompositions and complete
parabolic bundle structures on Schubert varieties. The proposition follows directly from
[5, Lemma 4.3] and the proof of [5, Corollary 3.7].

Proposition 2.7. ([5, Lemma 4.3, Corollary 3.7]) The permutation w has a complete BP de-
composition if and only if Xw has a complete parabolic bundle structure.

3 Proof of Main theorems

In this section we prove Theorems 1.1 and 1.4. We begin with two important well-known
lemmas on permutations and leave the proofs as exercises.

Lemma 3.1. Let v = v(1) · · · v(n) ∈W J where J = S \ {sr}. Then

S(v) = {sk ∈ S | v(r + 1) ≤ k < v(r)}.

Lemma 3.2. Let u = u(1) · · · u(n) ∈W. Then DL(u) = {sk ∈ S | u−1(k + 1) < u−1(k)}.

In the proofs of Theorems 1.1 and 1.4, we will often refer to sub-matrices or rect-
angular regions of a permutation matrix. Let A be the permutation matrix of w =
w(1) · · ·w(n). We say a region R of A is empty if the interior of R contains no nodes
of the form (w(i), i). We say a region R is decreasing if for every pair (w(i), i), (w(j), j)
in R, we have i < j implies w(i) > w(j). Empty regions in a permutation matrix will
be denoted by a shaded background and decreasing regions with be decorated (counter
intuitively) with a northeast arrow. Finally, we say a pair of nodes (w(i), i), (w(j), j) are
increasing if i < j and w(i) < w(j).

Proof of Theorem 1.1. Fix r < n and let w = w(1) · · ·w(n) ∈ W. Let w = vu be the
parabolic decomposition with respect to J = S \ {sr}. By Proposition 2.6, it suffices to
prove that w avoids the split patterns 3|12 and 23|1 with respect to position r if and only
if S(v) ∩ J = S(v) \ {sr} ⊆ DL(u). Note that if S(v) = ∅, then the theorem immediately
follows and hence we will assume that v is not the identity.
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Let
m := max{w(k) | k ≤ r} and l := min{w(k) | k > r}.

The nodes (m, w−1(m)) and (l, w−1(l)) partition the permutation matrix of w into regions
labeled A − H as in Figure 1. By definition of m and l, the regions D and E must be
empty. Moreover, Lemma 2.4 part (1) and Lemma 3.1 imply that

S(v) = {sk | l ≤ k < m}. (3.1)

Similarly, the permutation matrix of u partitions into regions A′ − H′ as in Figure 1.
Observe that since v is not the identity, we have l ≤ r. By Lemma 2.4 part (2), the
nodes in each region labeled A− H maintain the same relative order of those in A′ − H′

respectively. In particular, (r, w−1(m)) and (r + 1, w−1(l)) are nodes in the permutation
matrix of u. Furthermore, since regions D and E are empty, the sizes of regions A and
H are the same as the size of regions A′ and H′.

Now suppose w avoids the patterns 3|12 and 23|1 with respect to position r. Then
regions B, G must be empty and regions C, F must be decreasing in the permutation
matrix of w. Thus regions B′, G′ are empty and regions C′, F′ are decreasing in the
permutation matrix of u (See Figure 2). Now Lemma 3.2 and (3.1) imply that DL(u)
contains S(v) \ {sr} and hence w = vu is a BP decomposition.

A

B

D

C

E

F

H

G

m

l

r

A′

B′

D′

C′ E′

F′

H′
G′

m

l

r

r
r + 1

Figure 1: Permutation matrices of w and u partitioned by (m, w−1(m)) and (l, w−1(l)).

Conversely, suppose S(v) \ {sr} ⊆ DL(u). In particular, Lemma 3.2 and (3.1) say
that u−1(k + 1) < u−1(k) for all k ∈ [l, r − 1] t [r + 1, m− 1]. This implies that regions
B′, G′ are empty and regions C′, F′ are decreasing in the permutation matrix of u. Hence
regions B, G are empty and regions C, F are decreasing in the permutation matrix of w.
Thus w avoids both split patterns 3|12 and 23|1 with respect to position r. This completes
the proof.
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A

B

D

↗

E

↗

H

G

m

l

r

A′

B′

D′

↗ E′

↗

H′
G′

m

l

r

r
r + 1

Figure 2: Permutation matrices of w and u with w avoiding 3|12 and 23|1 with respect
to position r or equivalently, S(v) \ {sr} ⊆ DL(u).

Proposition 3.3. If w ∈W avoids 3412, 52341 and 635241, then there exists r < n such that w
avoids 3|12 and 23|1 with respect to position r. Furthermore, if S(w) 6= ∅, then we can choose r
such that sr ∈ S(w).

Proof. We prove the first part of Proposition 3.3 by contradiction. Suppose for every
position r < n, w contains either 3|12 or 23|1. In particular, w contains 3|12 with respect
to position r = 1. Any w(1)w(i)w(j) in relative position 3|12 partitions the permutation
matrix of w into regions labelled A− K as in Figure 3. Moreover, we can choose nodes
(w(i), i), (w(j), j) such that regions E, F, J are empty. Since w avoids 3412, region D must
also be empty and regions C and I must be decreasing.

A

B

C

D

E

F

G

H

I

J

K
1 i j

w(1)

w(i)

w(j)

A

B

↗

D

E

F

G

H

↗

J

K
1 i j

w(1)

w(i)

w(j)

Figure 3: Permutation matrix of w containing 3|12 with respect to position r = 1.

Now w contains either pattern 3|12 or 23|1 with respect to position r = i. We consider
several cases depending on if region I is empty or nonempty and if w contains 3|12 or
23|1 with respect to position i.

Case 1: Suppose the region I is nonempty and w contains 3|12 with respect to position
i. Since regions D, E, F and J are empty and I is decreasing, the permutation matrix of
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w must contain two increasing nodes in region G as in Figure 4. This implies w contains
the pattern 52341 which is a contradiction.

i

Figure 4: Permutation matrix of w containing 3|12 with respect to r = i and region I
is nonempty.

Case 2: Suppose the region I is nonempty and w contains 23|1 with respect to position
i. If region A has a node belonging to the pattern 23|1, then w contains the pattern 52341.
Otherwise, since region C is decreasing, w must contain a pair of increasing nodes in
region B or B ∪ C. If the nodes are in region B, then w contains 52341 and if the nodes
are in region B∪C, then w contains 635241. See Figure 5 for an illustration of these three
subcases.

i i i

Figure 5: Permutation matrix of w containing 23|1 with respect to r = i and region I
is nonempty.

Case 3: Suppose the region I is empty. Since region C is decreasing, it is not possible
for w to contain 23|1 with respect to position i. Hence w contains 3|12 and thus region
G must contain a pair of increasing nodes. These nodes partition region G ∪ H into sub-
regions labeled A′ − K′ as in Figure 6. Choose increasing nodes (w(i′), i′) and (w(j′), j′)
in region G, so that regions E′, F′ and J′ are empty. Also, since w avoids 3412 and 52341,
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we can further assume that regions A′ and D′ are empty and that regions C′ and I′ are
decreasing.

A
B

C

D

E
F

I

J

K

A′

B′

C′

D′

E′

F′

G′

H′

I′

J′

K′

1 i i′ j′

w(1)

w(i′)

w(j′)

A
B

↗

D

E
F

I

J

K

A′

B′

↗

D′

E′

F′

G′

H′

↗

J′

K′

1 i i′ j′

w(1)

w(i′)

w(j′)

Figure 6: Permutation matrix of w containing 3|12 with respect to position r = i and
region I is empty.

Now w contains 3|12 or 23|1 with respect to position r = i′. First, if w contains 3|12,
then, since region I′ is decreasing, w must have a pair of increasing nodes in region G′.
This implies w contains 52341.

i′

Figure 7: Permutation matrix of w containing 3|12 with respect to position r = i′.

If w contains 23|1, then the fact that regions C and C′ are decreasing implies that w
has a pair of increasing nodes in either regions B′, B′ ∪ C′, C ∪ B′ or C ∪ C′. If w contains
increasing nodes in regions B′ or B′ ∪ C′, then w contains 52341 or 635241 respectively
as in Figure 8.

Finally, if w contains increasing nodes in regions C ∪ B′ or C ∪ C′, then we have the
following three possibilities as in Figure 9.
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i′ i′

Figure 8: Permutation matrix of w containing 23|1 with respect to position r = i′ using
regions B′ and B′ ∪ C′.

i′ i′ i′

Figure 9: Permutation matrix of w containing 23|1 with respect to position r = i′ using
regions C ∪ B′ and C ∪ C′.

We can see that w contains 52341, 635241 and 3412 respectively for each of these
possibilities. This completes the first part of the proof.

For the second part, if w ∈ W avoids the patterns 3412, 52341 and 635241, then there
exists r < n where the parabolic decomposition w = vu with respect to J = S \ {sr} is a
BP decomposition. If sr ∈ S(w), then we are done. Otherwise, sr /∈ S(w) which implies
w = u. Write w = w1|w2 split at position r. If J1 = {s1, · · · , sr−1} and J2 = J \ J1, then
Lemma 2.4 implies that w1 and w2 also avoid 3412, 52341 and 635241 as permutations
in WJ1 ' Sr and WJ2 ' Sn−r respectively. Since either r or n − r is greater than 1 we
will assume, without loss of generality, that r > 1 and S(w1) 6= ∅. By induction, there
exists r′ < r for which sr′ ∈ S(w1) and w1 avoids 3|12 and 23|1 with respect to position
r′. Now Lemma 2.4 implies w also avoids 3|12 and 23|1 with respect to position r′. But
S(w1) ⊆ S(w) and hence sr′ ∈ S(w). This completes the proof.

Proof of Theorem 1.4. Theorem 1.4 follows directly by induction on the length of w using
Proposition 3.3.
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