Séminaire Lotharingien de Combinatoire **78B** (2017) Article #7, 12 pp.

Pattern avoidance and fiber bundle structures on Schubert varieties

Timothy Alland* and Edward Richmond^{\dagger}

Department of Mathematics, Oklahoma State University, Stillwater, OK, USA

Abstract. We give a permutation pattern avoidance criteria for determining when the projection map from the flag variety to a Grassmannian induces a fiber bundle structure on a Schubert variety. In particular, we show that a Schubert variety has such a fiber bundle structure if and only if the corresponding permutation avoids the split patterns 3|12 and 23|1. We also show that a Schubert variety is an iterated fiber bundle of Grassmannian Schubert varieties if and only if the corresponding permutation avoids (non-split) patterns 3412, 52341, and 635241.

Résumé. Nous donnons un schéma de permutation des critères d'évitement pour déterminer quand la carte de projection du drapeau de la variété à un Grassmannienne induit une structure de faisceau de fibres sur une variété de Schubert. En particulier, nous montrons qu'une variété de Schubert a une telle structure de faisceau de fibres si et seulement si la permutation correspondante évite les motifs fendus 3/12 et 23/1. Nous montrons aussi qu'une variété de Schubert est un faisceau de fibres itéré de variétés Grassmannienne Schubert si et seulement si la permutation correspondante évite (non-fractionnées) modèles 3412, 52341 et 635241.

Keywords: Permutation pattern avoidance, Schubert varieties

1 Introduction

Let K be an algebraically closed field and let

$$F\ell(n) := \{V_{\bullet} = V_1 \subset V_2 \subset \cdots \subset V_{n-1} \subset \mathbb{K}^n \mid \dim(V_i) = i\}$$

denote the complete flag variety on \mathbb{K}^n . For each $r \in \{1, ..., n-1\}$, let Gr(r, n) denote the Grassmannian of *r*-dimensional subspaces of \mathbb{K}^n and consider the natural projection map

$$\pi_r: \mathrm{F}\ell(n) \twoheadrightarrow \mathrm{Gr}(r, n) \tag{1.1}$$

given by $\pi_r(V_{\bullet}) = V_r$. It is easy to see that the projection π_r is a fiber bundle on $F\ell(n)$ with fibers isomorphic to $F\ell(r) \times F\ell(n-r)$. The goal of this paper is to give a pattern

^{*}tim.alland@okstate.edu

[†]edward.richmond@okstate.edu

avoidance criteria for when the map π_r restricted to a Schubert variety of $F\ell(n)$ is also a fiber bundle.

Fix a basis $\{e_1, \ldots, e_n\}$ of \mathbb{K}^n and let $E_i := \operatorname{span}\langle e_1, \ldots, e_i \rangle$. Each permutation $w = w(1) \cdots w(n)$ of the symmetric group \mathfrak{S}_n defines a Schubert variety

$$X_w := \{ V_{\bullet} \in \mathcal{F}\ell(n) \mid \dim(E_i \cap V_j) \ge r_w[i, j] \}$$

where $r_w[i, j] := \#\{k \le j \mid w(k) \le i\}$. For details on the geometry of the map π_r restricted to X_w , see Lemma 2.4 and Proposition 2.6.

Theorem 1.1. Let r < n and $w \in \mathfrak{S}_n$. The projection π_r restricted to X_w is a Zariski-locally trivial fiber bundle if and only if w avoids the split patterns 3|12 and 23|1 with respect to position r.

If a permutation avoids a split pattern with respect to every position r < n, then that permutation avoids the pattern in the classical sense. For a precise definition of split pattern avoidance, see Definition 2.2. Pattern avoidance has been used to combinatorially describe many geometric properties of Schubert varieties. Most notably, Lakshmibai and Sandhya prove that a Schubert variety X_w is smooth if and only if w avoids the patterns 3412 and 4231 [3]. Pattern avoidance has been used to characterize many other geometric properties on Schubert varieties as well. For a survey of these results see [1].

1.1 Complete parabolic bundle structures

For any positive integer *n*, define the set $[n] := \{1, ..., n\}$. The varieties $F\ell(n)$ and Gr(r, n) are the extreme examples in the collection of partial flag varieties on \mathbb{K}^n . For any subset $\mathbf{a} := \{a_1 < \cdots < a_k\} \subseteq [n-1]$, define the partial flag variety

$$\mathrm{F}\ell(\mathbf{a},n):=\{V_{\bullet}^{\mathbf{a}}:=V_{a_{1}}\subset V_{a_{2}}\subset\cdots\subset V_{a_{k}}\subseteq\mathbb{K}^{n}\mid \dim(V_{a_{i}})=a_{i}\}.$$

If $\mathbf{b} \subseteq \mathbf{a}$, then there is a natural projection map $\pi_{\mathbf{b}}^{\mathbf{a}} : F\ell(\mathbf{a}, n) \twoheadrightarrow F\ell(\mathbf{b}, n)$ given by $\pi_{\mathbf{b}}^{\mathbf{a}}(V_{\bullet}^{\mathbf{a}}) = V_{\bullet}^{\mathbf{b}}$. Note that the map $\pi_r = \pi_{\{r\}}^{[n-1]}$ from (1.1). Any permutation $\sigma = \sigma(1) \cdots \sigma(n-1) \in \mathfrak{S}_{n-1}$ defines a collection of nested subsets

$$\sigma_1 \subset \sigma_2 \subset \cdots \subset \sigma_{n-2} \subset \sigma_{n-1} = [n-1]$$
 where $\sigma_i := \{\sigma(1), \ldots, \sigma(i)\}$

The maps $\pi_{\sigma_{i-1}}^{\sigma_i}$ induce an iterated fiber bundle structure on the complete flag variety

$$F\ell(n) \xrightarrow{\pi_{\sigma_{n-2}}^{[n-1]}} F\ell(\sigma_{n-2}, n) \xrightarrow{\pi_{\sigma_{n-3}}^{\sigma_{n-2}}} \cdots \xrightarrow{\pi_{\sigma_{2}}^{\sigma_{3}}} F\ell(\sigma_{2}, n) \xrightarrow{\pi_{\sigma_{1}}^{\sigma_{2}}} F\ell(\sigma_{1}, n) \to pt$$
(1.2)

where the fibers of each map $\pi_{\sigma_{i-1}}^{\sigma_i}$ are isomorphic to Grassmannians.

Definition 1.2. Let $w \in \mathfrak{S}_n$. We say X_w has a **complete parabolic bundle structure** if there is a permutation $\sigma \in \mathfrak{S}_{n-1}$ such that the maps $\pi_{\sigma_{i-1}}^{\sigma_i}$ induce an iterated fiber bundle structure on the Schubert variety

$$X_{w} = X_{n-1} \xrightarrow{\pi_{\sigma_{n-2}}^{[n-1]}} X_{n-2} \xrightarrow{\pi_{\sigma_{n-3}}^{\sigma_{n-2}}} \cdots \xrightarrow{\pi_{\sigma_{2}}^{\sigma_{3}}} X_{2} \xrightarrow{\pi_{\sigma_{1}}^{\sigma_{2}}} X_{1} \longrightarrow pt$$
(1.3)

where $X_i := \pi_{\sigma_i}^{[n-1]}(X_n) \subseteq F\ell(\sigma_i, n)$. In other words, each map $\pi_{\sigma_{i-1}}^{\sigma_i} : X_i \twoheadrightarrow X_{i-1}$ is a Zariski-locally trivial fiber bundle.

Some Schubert varieties do not have complete parabolic bundle structures. The smallest such Schubert variety is X_{3412} . When $\mathbb{K} = \mathbb{C}$, Ryan showed that any smooth Schubert variety has complete parabolic bundle structure [6]. Wolper later generalized this result to include Schubert varieties over any algebraically closed field [7]. Combining these results with the Lakshmibai-Sandhya smoothness criteria, we have:

Theorem 1.3. ([6, 7, 3]) If w avoids patterns 3412 and 4231, then X_w has a complete parabolic bundle structure.

An analogous result to Theorem 1.3 holds true for rationally smooth Schubert varieties of any finite type [5]. We remark that the converse of Theorem 1.3 is false. For example, the permutation $\sigma = 213$ induces a complete parabolic bundle structure on X_{4231} . One application of Theorem 1.1 is a pattern avoidance characterization of Schubert varieties that have complete parabolic bundle structures.

Theorem 1.4. The permutation w avoids patterns 3412, 52341 and 635241 if and only if the Schubert variety X_w has a complete parabolic bundle structure.

The key property used to prove both Theorems 1.1 and 1.4 is the notion of a Billey-Postnikov (BP) decomposition w = vu of a permutation (see Proposition 2.6 for the definition). The term BP decomposition was originally used in [4] to describe a certain factorization condition on the Poincaré polynomials of w, v, u observed by Billey and Postnikov in [2]. Since then, several equivalent conditions have been given to describe this property (see [5, Section 4]).

2 Preliminaries

For any integers m < n, define the interval $[m, n] := \{m, m + 1, ..., n\}$ and let [n] := [1, n]. We now denote the symmetric group $W := \mathfrak{S}_n$ and will denote permutations $w \in W$ using one-line notation $w = w(1)w(2)\cdots w(n)$. Diagrammatically, we draw a representation of the permutation matrix of w with nodes marking the points (w(i), i) using the convention that (1, 1) marks the upper left corner.

Example 2.1. The permutation w = 436125 corresponds to the matrix:

A **split pattern** $w = w_1 | w_2 \in W$ is a divided permutation where $w_1 = w(1) \cdots w(j)$ and $w_2 = w(j+1) \cdots w(n)$ for some $j \in [n-1]$. We use split patterns to make the following modified definition of pattern containment and avoidance.

Definition 2.2. Let $k, r \le n$. Let $w = w(1) \cdots w(n)$ and $u = u(1) \cdots u(j)|u(j+1) \cdots u(k)$. We say w contains the split pattern u with respect to position r if there exists a sequence $(i_1 < \cdots < i_k) \subseteq [n]$ such that

- 1. $w(i_1) \cdots w(i_k)$ has the same relative order as u
- 2. $i_j \leq r < i_{j+1}$.

If w does not contain u with respect to position r, then we say w **avoids the split pattern** u with respect to position r.

Example 2.3. Let w = 426135 and u = 34|12. Then w contains the split pattern u with respect to position r = 3, but avoids the split pattern u with respect to all other positions.

Note that part (1) of Definition 2.2 is the usual definition of pattern containment. It is easy to see that if w avoids a split pattern u with respect to all $r \in [n - 1]$, then w avoids the non-split pattern u in the usual sense.

We now go over some notation and properties of W as a Coxeter group. Let $S = \{s_1, \ldots, s_{n-1}\}$ denote the set of simple generators of W. Let $\ell : W \to \mathbb{Z}_{\geq 0}$ denote the length function and \leq denote the Bruhat partial order on W. For any $w \in W$, define

$$S(w) := \{s \in S \mid s \le w\}$$

$$D_L(w) := \{s \in S \mid \ell(sw) < \ell(w)\}$$

$$D_R(w) := \{s \in S \mid \ell(ws) < \ell(w)\}$$

to be the **support**, **left descent set**, **and right descent set** of *w*, respectively. For any subset $J \subseteq S$, let W_I denote the parabolic subgroup generated by *J* and let W^J denote the

set of minimal length coset representatives of W/W_J . For each $w \in W$ and $J \subseteq S$, there is a unique **parabolic decomposition** w = vu where $v \in W^J$ and $u \in W_J$. The parabolic decompositions with respect to $J = S \setminus \{s_r\}$ can be described explicitly in terms of split patterns.

Lemma 2.4. Let $w = w_1|w_2 = w(1) \cdots w(r)|w(r+1) \cdots w(n) \in W$ and w = vu be the parabolic decomposition with respect to $J = S \setminus \{s_r\}$. Then

- 1. $v = v_1 | v_2$ where v_1 and v_2 respectively consist of the entries of w_1 and w_2 arranged in increasing order.
- 2. $u = u_1 | u_2$ where u_1 and u_2 are respectively the unique permutations on [1, r] and [r+1, n] with relative orders of w_1 and w_2 .

Proof. The lemma follows from the fact that $D_R(v) \subseteq \{s_r\}$ and that $s_r \notin S(u)$.

Example 2.5. Let w = 541|623. If w = vu is the parabolic decomposition with respect to $J = S \setminus \{s_3\}$, then v = 145|236 and u = 321|645.

In the case $J = S \setminus \{s_r\}$, each $v \in W^J$ corresponds to a unique Schubert variety in the Grassmannian Gr(r, n). In particular, define the Schubert variety

$$X_v^j := \{ V \in \operatorname{Gr}(r, n) \mid \dim(V \cap E_j) \ge r_v[i, j] \}.$$

Geometrically, restricting π_r to X_w gives the projection $\pi_r : X_w \rightarrow X_v^J$ where the generic fiber is isomorphic to the Schubert variety X_u . We now give a combinatorial characterization for when π_r is a fiber bundle.

Proposition 2.6. ([5, Theorem 3.3, Proposition 4.2]) Let $w \in \mathfrak{S}_n$ and r < n. Let w = vu be the parabolic decomposition with respect to $J = S(w) \setminus \{s_r\}$. Then the following are equivalent.

- 1. w = vu is a **BP** decomposition with respect to J.
- 2. $S(v) \cap J \subseteq D_L(u)$.
- 3. The projection $\pi_r : X_w \to X_v^J$ is a Zariski-locally trivial X_u -fiber bundle.

The equivalencies in Proposition 2.6 are proved in [5] and for this paper, we will take either parts (2) or (3) of Proposition 2.6 as the definition of BP decomposition (note that this definition corresponds to a "Grassmannian BP decomposition" in [5]). The goal of Theorem 1.1 is to give a pattern avoidance criteria on the permutation w for any of these equivalent conditions.

Finally, we say w has a **complete BP decomposition** if we can write $w = v_k \cdots v_1$ where for every $i \in [k-1]$, we have $|S(v_i \cdots v_1)| = i$ and $v_i(v_{i-1} \cdots v_1)$ is a BP decomposition with respect to $S \setminus \{s_{r_i}\}$ where s_{r_i} is the unique simple generator in $S(v_i) \setminus S(v_{i-1} \cdots v_1)$.

Observe that the maps $\pi_r = \pi_{\{r\}}^{[n-1]}$ are not of the form $\pi_{\sigma_{i-1}}^{\sigma_i}$ used in Definition 1.2. The next proposition gives the connection between BP decompositions and complete parabolic bundle structures on Schubert varieties. The proposition follows directly from [5, Lemma 4.3] and the proof of [5, Corollary 3.7].

Proposition 2.7. ([5, Lemma 4.3, Corollary 3.7]) *The permutation* w *has a complete BP decomposition if and only if* X_w *has a complete parabolic bundle structure.*

3 Proof of Main theorems

In this section we prove Theorems 1.1 and 1.4. We begin with two important well-known lemmas on permutations and leave the proofs as exercises.

Lemma 3.1. Let $v = v(1) \cdots v(n) \in W^J$ where $J = S \setminus \{s_r\}$. Then

$$S(v) = \{s_k \in S \mid v(r+1) \le k < v(r)\}$$

Lemma 3.2. Let $u = u(1) \cdots u(n) \in W$. Then $D_L(u) = \{s_k \in S \mid u^{-1}(k+1) < u^{-1}(k)\}$.

In the proofs of Theorems 1.1 and 1.4, we will often refer to sub-matrices or rectangular regions of a permutation matrix. Let *A* be the permutation matrix of $w = w(1) \cdots w(n)$. We say a region *R* of *A* is **empty** if the interior of *R* contains no nodes of the form (w(i), i). We say a region *R* is **decreasing** if for every pair (w(i), i), (w(j), j)in *R*, we have i < j implies w(i) > w(j). Empty regions in a permutation matrix will be denoted by a shaded background and decreasing regions with be decorated (counter intuitively) with a northeast arrow. Finally, we say a pair of nodes (w(i), i), (w(j), j) are **increasing** if i < j and w(i) < w(j).

Proof of Theorem 1.1. Fix r < n and let $w = w(1) \cdots w(n) \in W$. Let w = vu be the parabolic decomposition with respect to $J = S \setminus \{s_r\}$. By Proposition 2.6, it suffices to prove that w avoids the split patterns 3|12 and 23|1 with respect to position r if and only if $S(v) \cap J = S(v) \setminus \{s_r\} \subseteq D_L(u)$. Note that if $S(v) = \emptyset$, then the theorem immediately follows and hence we will assume that v is not the identity.

Let

$$m := \max\{w(k) \mid k \le r\} \quad \text{and} \quad l := \min\{w(k) \mid k > r\}.$$

The nodes $(m, w^{-1}(m))$ and $(l, w^{-1}(l))$ partition the permutation matrix of w into regions labeled A - H as in Figure 1. By definition of m and l, the regions D and E must be empty. Moreover, Lemma 2.4 part (1) and Lemma 3.1 imply that

$$S(v) = \{s_k \mid l \le k < m\}.$$
(3.1)

Similarly, the permutation matrix of u partitions into regions A' - H' as in Figure 1. Observe that since v is not the identity, we have $l \leq r$. By Lemma 2.4 part (2), the nodes in each region labeled A - H maintain the same relative order of those in A' - H' respectively. In particular, $(r, w^{-1}(m))$ and $(r + 1, w^{-1}(l))$ are nodes in the permutation matrix of u. Furthermore, since regions D and E are empty, the sizes of regions A and H are the same as the size of regions A' and H'.

Now suppose *w* avoids the patterns 3|12 and 23|1 with respect to position *r*. Then regions *B*, *G* must be empty and regions *C*, *F* must be decreasing in the permutation matrix of *w*. Thus regions *B'*, *G'* are empty and regions *C'*, *F'* are decreasing in the permutation matrix of *u* (See Figure 2). Now Lemma 3.2 and (3.1) imply that $D_L(u)$ contains $S(v) \setminus \{s_r\}$ and hence w = vu is a BP decomposition.

Figure 1: Permutation matrices of *w* and *u* partitioned by $(m, w^{-1}(m))$ and $(l, w^{-1}(l))$.

Conversely, suppose $S(v) \setminus \{s_r\} \subseteq D_L(u)$. In particular, Lemma 3.2 and (3.1) say that $u^{-1}(k+1) < u^{-1}(k)$ for all $k \in [l, r-1] \sqcup [r+1, m-1]$. This implies that regions B', G' are empty and regions C', F' are decreasing in the permutation matrix of u. Hence regions B, G are empty and regions C, F are decreasing in the permutation matrix of w. Thus w avoids both split patterns 3|12 and 23|1 with respect to position r. This completes the proof.

Figure 2: Permutation matrices of *w* and *u* with *w* avoiding 3|12 and 23|1 with respect to position *r* or equivalently, $S(v) \setminus \{s_r\} \subseteq D_L(u)$.

Proposition 3.3. If $w \in W$ avoids 3412, 52341 and 635241, then there exists r < n such that w avoids 3|12 and 23|1 with respect to position r. Furthermore, if $S(w) \neq \emptyset$, then we can choose r such that $s_r \in S(w)$.

Proof. We prove the first part of Proposition 3.3 by contradiction. Suppose for every position r < n, w contains either 3|12 or 23|1. In particular, w contains 3|12 with respect to position r = 1. Any w(1)w(i)w(j) in relative position 3|12 partitions the permutation matrix of w into regions labelled A - K as in Figure 3. Moreover, we can choose nodes (w(i), i), (w(j), j) such that regions E, F, J are empty. Since w avoids 3412, region D must also be empty and regions C and I must be decreasing.

Figure 3: Permutation matrix of *w* containing 3|12 with respect to position r = 1.

Now *w* contains either pattern 3|12 or 23|1 with respect to position r = i. We consider several cases depending on if region *I* is empty or nonempty and if *w* contains 3|12 or 23|1 with respect to position *i*.

Case 1: Suppose the region *I* is nonempty and *w* contains 3|12 with respect to position *i*. Since regions *D*, *E*, *F* and *J* are empty and *I* is decreasing, the permutation matrix of

w must contain two increasing nodes in region G as in Figure 4. This implies w contains the pattern 52341 which is a contradiction.

Figure 4: Permutation matrix of *w* containing 3|12 with respect to r = i and region *I* is nonempty.

Case 2: Suppose the region *I* is nonempty and *w* contains 23|1 with respect to position *i*. If region *A* has a node belonging to the pattern 23|1, then *w* contains the pattern 52341. Otherwise, since region *C* is decreasing, *w* must contain a pair of increasing nodes in region *B* or $B \cup C$. If the nodes are in region *B*, then *w* contains 52341 and if the nodes are in region $B \cup C$, then *w* contains 635241. See Figure 5 for an illustration of these three subcases.

Figure 5: Permutation matrix of *w* containing 23|1 with respect to r = i and region *I* is nonempty.

Case 3: Suppose the region *I* is empty. Since region *C* is decreasing, it is not possible for *w* to contain 23|1 with respect to position *i*. Hence *w* contains 3|12 and thus region *G* must contain a pair of increasing nodes. These nodes partition region $G \cup H$ into sub-regions labeled A' - K' as in Figure 6. Choose increasing nodes (w(i'), i') and (w(j'), j') in region *G*, so that regions E', F' and J' are empty. Also, since *w* avoids 3412 and 52341,

we can further assume that regions A' and D' are empty and that regions C' and I' are decreasing.

Figure 6: Permutation matrix of *w* containing 3|12 with respect to position r = i and region *I* is empty.

Now *w* contains 3|12 or 23|1 with respect to position r = i'. First, if *w* contains 3|12, then, since region I' is decreasing, *w* must have a pair of increasing nodes in region G'. This implies *w* contains 52341.

Figure 7: Permutation matrix of *w* containing 3|12 with respect to position r = i'.

If *w* contains 23|1, then the fact that regions *C* and *C'* are decreasing implies that *w* has a pair of increasing nodes in either regions $B', B' \cup C', C \cup B'$ or $C \cup C'$. If *w* contains increasing nodes in regions *B'* or $B' \cup C'$, then *w* contains 52341 or 635241 respectively as in Figure 8.

Finally, if *w* contains increasing nodes in regions $C \cup B'$ or $C \cup C'$, then we have the following three possibilities as in Figure 9.

Figure 8: Permutation matrix of *w* containing 23|1 with respect to position r = i' using regions *B*' and $B' \cup C'$.

Figure 9: Permutation matrix of *w* containing 23|1 with respect to position r = i' using regions $C \cup B'$ and $C \cup C'$.

We can see that w contains 52341, 635241 and 3412 respectively for each of these possibilities. This completes the first part of the proof.

For the second part, if $w \in W$ avoids the patterns 3412, 52341 and 635241, then there exists r < n where the parabolic decomposition w = vu with respect to $J = S \setminus \{s_r\}$ is a BP decomposition. If $s_r \in S(w)$, then we are done. Otherwise, $s_r \notin S(w)$ which implies w = u. Write $w = w_1|w_2$ split at position r. If $J_1 = \{s_1, \dots, s_{r-1}\}$ and $J_2 = J \setminus J_1$, then Lemma 2.4 implies that w_1 and w_2 also avoid 3412, 52341 and 635241 as permutations in $W_{J_1} \simeq S_r$ and $W_{J_2} \simeq S_{n-r}$ respectively. Since either r or n - r is greater than 1 we will assume, without loss of generality, that r > 1 and $S(w_1) \neq \emptyset$. By induction, there exists r' < r for which $s_{r'} \in S(w_1)$ and w_1 avoids 3|12 and 23|1 with respect to position r'. But $S(w_1) \subseteq S(w)$ and hence $s_{r'} \in S(w)$. This completes the proof.

Proof of Theorem 1.4. Theorem 1.4 follows directly by induction on the length of w using Proposition 3.3.

Acknowledgements

The first author was partially supported by Oklahoma State University's Koslow Undergraduate Math Research Experience Scholarship. The second author was partially supported by a NSA Young Investigator's Grant and an Oklahoma State University Dean's Incentive Grant. The program SAGE was used to collect data on BP decompositions of permutations in relation to pattern avoidance.

References

- H. Abe and S. C. Billey. "Consequences of the Lakshmibai-Sandhya Theorem: the ubiquity of permutation patterns in Schubert calculus and related geometry". To appear in *Adv. Studies of Pure Math.* 2014. arXiv:1403.4345.
- [2] S. C. Billey and A. Postnikov. "Smoothness of Schubert varieties via patterns in root subsystems". Adv. in Appl. Math. 34 (2005), pp. 447–466. DOI.
- [3] V. Lakshmibai and B. Sandhya. "Criterion for smoothness of Schubert varieties in Sl(n)/B". *Proc. Indian Acad. Sci. Math. Sci.* 100 (1990), pp. 45–52. DOI.
- [4] S. Oh and H. Yoo. "Bruhat order, rationally smooth Schubert varieties, and hyperplane arrangements". 22nd International Conference on Formal Power Series and Algebraic Combinatorics. DMTCS Proceedings, 2010, pp. 965–972. URL.
- [5] E. Richmond and W. Slofstra. "Billey-Postnikov decompositions and the fibre bundle structure of Schubert varieties". *Math. Ann.* **366** (2016), pp. 31–55. DOI.
- [6] K. M. Ryan. "On Schubert varieties in the flag manifold of Sl(n, C)". Math. Ann. 276 (1987), pp. 205–224. DOI.
- [7] J. S. Wolper. "A combinatorial approach to the singularities of Schubert varieties". Adv. Math. 76 (1989), pp. 184–193. DOI.